Primitive Sets of $\mathrm{F}_{\mathrm{n}} / \mathrm{R}$ Lie Algebras

Cennet Eskal
Department of Mathematics, Osmaniye Korkut Ata University, Osmaniye, Turkey.

Abstract

Let $\boldsymbol{F}_{\boldsymbol{n}}$ be the free Lie algebra freely generated by a set $\left\{\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\boldsymbol{n}}\right\}$ and let \boldsymbol{R} be a verbal ideal of $\boldsymbol{F}_{\boldsymbol{n}}$. We prove that if \boldsymbol{W} is a primitive subset of $\boldsymbol{F}_{\boldsymbol{n}} / \boldsymbol{R}$ which all of its elements do not involve $\boldsymbol{x}_{\boldsymbol{n}}$ then \boldsymbol{W} is primitive in $\boldsymbol{F}_{\boldsymbol{n}-\mathbf{1}} / \widehat{\boldsymbol{R}}$, where $\widehat{\boldsymbol{R}}=\boldsymbol{R} \cap \boldsymbol{F}_{\boldsymbol{n}-\mathbf{1}}$.

Keywords: Free Lie algebras, solvable, nilpotent (super)algebras.

1. Introduction

Let F_{n} be a free Lie algebra over the field K of characteristic zero with a finite free generating set $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Derived terms of the derived series of F_{n}, lower central series of F_{n} and more generally verbal ideals of F_{n} are fully invariant ideals. If R be a verbal ideal of F_{n} then the quotients of the form F_{n} / R include the free Lie algebra, free nilpotent Lie algebra and free solvable Lie algebra.

Let $\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}, k \leq n$, be a subset of F_{n}. The subset $\left\{a_{i}+R: i=1,2, \cdots, k\right\}$ is primitive in F_{n} / R if it can be extended to a free generating set of F_{n} / R.

In this work we prove that a subset $\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ of F_{n-1} if $\left\{a_{1}+R, a_{2}+R, \cdots, a_{k}+R\right\}$ is primitive in F_{n} / R then $\left\{a_{1}+\hat{R}, a_{2}+\hat{R}, \cdots, a_{k}+\hat{R}\right\}$ is primitive in F_{n-1} / \hat{R}, where F_{n-1} is the free Lie algebra generated by the set $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$ and $\hat{R}=R \cap F_{n-1}$. We obtain our main results for different choices of R.
The motivation for this work came from the analogous results for free groups [3, 4,5,6]. All background and undefined notions here can be found [1] and [8].

By $\gamma_{m}\left(F_{n}\right)$ and $\delta^{m}\left(F_{n}\right)$, we denote the m-th term of the lower central series and m-th term of the derived series of F_{n}, respectively. For the second term $\delta^{2}\left(F_{n}\right)$, we use $F_{n}^{\prime \prime}$.
We regard all algebras in this work as given over an arbitrary fixed field K of characteristic zero.

2. Preliminaries

In the proof of our results we use a interpretation of primitivity using Fox derivatives via a theorem of Umirbaev.
By $U\left(F_{n}\right)$ we define the universal enveloping algebra of F_{n}, i.e., the free associative algebra over the field K with the same set X of free generators. To define non-commutative Jacobian matrix, we have to introduce non-commutative partial derivatives. We call them Fox derivatives in honour of R. Fox who considered them in a free group ring [2].
There is the augmentation homomorphism $\varepsilon: U\left(F_{n}\right) \rightarrow K$ defined by $\varepsilon\left(x_{i}\right)=0,1 \leq i \leq n$. The kernel Δ of this homomorphism is a free left $U\left(F_{n}\right)$-module with a free basis X, so that every element $u \in \Delta$ can be uniquely written in the form $u=\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} x_{i}$. The coordinates $\frac{\partial u}{\partial x_{i}}$ of the element u in the free basis X are called Fox derivatives. One can extend these derivations to the whole $U\left(F_{n}\right)$ by defining $\frac{\partial(1)}{\partial x_{i}}=0$.

Let R be an ideal of F_{n}. Then by Δ_{R} we denote the right ideal of $U\left(F_{n}\right)$ generated by R.
We need the following well known technical lemmas.
Lemma 2.1. Let J be an arbitrary ideal of $U\left(F_{n}\right)$ and let $u \in \Delta$. Then $u \in J \Delta$ if and only if $\frac{\partial u}{\partial x_{i}} \in J$ for each $i, 1 \leq i \leq n$.
Lemma 2.2. Let R be an ideal of $\boldsymbol{F}_{\boldsymbol{n}}$ and let $u \in F_{n}$. Then $u \in \Delta_{R} \Delta$ if and only if $u \in R^{\prime \prime}$.
Now for an arbitrary finite set of elements $Y=\left\{y_{1}, y_{2}, \cdots, y_{k}\right\} \subset U\left(F_{n}\right)$, we can define the matrix

$$
J(Y)=\left(\frac{\partial y_{i}}{\partial x_{j}}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}},
$$

the Jacobian matrix. Essentially new properties of non-commutative Jacobian matrix have been discovered in [7], [11] and [13]. In [12], Umirbaev has proved a criterion of primitiveness for a system of elements in a finitely generated

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified
Vol. 5, Issue 4, April 2018
relatively free Lie algebra. About three years later in [9] it is shown that the subalgebra of a Lie algebra generated by a finite set of elements is equal to the maximal number of left independent rows of the corresponding Jacobian matrix.

These results reveal the following remarkable situation with the Jacobian matrix of a finite set of elements: "The invertibility of the Jacobian matrix means that a given set of elements is a part of a free generating set."
Theorem 2.3. [12] Let T be an arbitrary ideal of F_{n}. Then the following conditions are equivalent:

1. The system $E=\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$ of the algebra $F_{n} / \gamma_{c+1}(T)$ is primitive, where $c \geq 1$.
2. The Jacobian matrix $J(E)$ is right invertible over $U\left(F_{n} / T\right)$.
3. The minors of order k of the matrix $J(E)$ generate the unitary ideal of the algebra $U\left(F_{n} / T\right)$.

Now taking $T=\{0\}$ we obtain the following.
Corollary 2.4. The system $Y=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ of the algebra F_{n} is primitive if and only if the Jacobian matrix $J(Y)$ is right invertible over $U\left(F_{n}\right)$.

3. Main Results

Through this work F_{n} and F_{n-1} denote the free Lie algebras with the generating sets $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $\left\{x_{1}, x_{2}, \cdots, x_{n-1}\right\}$ respectively. Let R be a verbal ideal of F_{n}. We will consider our problem for different choices of R.

3.1. The Free Lie Algebra Case: $\boldsymbol{R}=\{0\}$

Although the general case of the following theorem is given [10] we give a different and elegant proof.
Theorem 3.1. Let $W=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\} \subset F_{n-1}$ be primitive in F_{n}. Then W is primitive in F_{n-1}.
Proof. Since the set W is primitive in F_{n} by Corollary 2.4 the Jacobian matrix $J(W)$ is right invertible over $U\left(F_{n}\right)$, i.e., there exists a $n \times k$ matrix $B=\left(b_{i j}\right)$ with $\left(b_{i j}\right) \in U\left(F_{n}\right)$ satisfying

$$
\begin{equation*}
J(W) B=I_{k}, \tag{1}
\end{equation*}
$$

where I_{k} is the $k \times k$ identity matrix over $U\left(F_{n}\right)$. Since $W \subset F_{n-1}$, the elements of W do not involve x_{n}. The n-th column of the matrix $J(W)$ do not involve x_{n}. Thus the form of $J(W)$ is

$$
J(W)=\left(\begin{array}{ccccc}
\frac{\partial a_{1}}{\partial x_{1}} & \frac{\partial a_{1}}{\partial x_{2}} & \cdots & \frac{\partial a_{1}}{\partial x_{n-1}} & 0 \\
\frac{\partial a_{2}}{\partial x_{1}} & \frac{\partial a_{2}}{\partial x_{2}} & \cdots & \frac{\partial a_{2}}{\partial x_{n-1}} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\partial a_{k}}{\partial x_{1}} & \frac{\partial a_{k}}{\partial x_{2}} & \cdots & \frac{\partial a_{k}}{\partial x_{n-1}} & 0
\end{array}\right) .
$$

Each entry of the matrix B can be uniquely written in the form $b_{i j}=q_{i j}+p_{i j}$, where $q_{i j}$ represents the sum of all terms in $b_{i j}$ involving x_{n} and $p_{i j}$ is an element of $U\left(F_{n}\right)$, not involving x_{n}. Assign $Q=\left(q_{i j}\right)$ and $P=\left(p_{i j}\right)$. Then we have $B=Q+P$. By equality (1)

$$
J(W) \cdot Q+J(W) \cdot P=I_{k}
$$

Either each entry of $J(W) . Q$ is zero or involve x_{n}. Since neither I_{k} nor $J(W) . P$ involves x_{n} we must have $J(W) . Q=0$ yielding $J(W) . P=I_{k}$. Let $\bar{J}(W)$ and \bar{P} be the matrices obtained from $J(W)$ and P, respectively, by deleting n-th column and row. Then $\bar{J}(W)$ is the Jacobian matrix of W over $U\left(F_{n-1}\right)$ and \bar{P} is a matrix over $U\left(F_{n-1}\right)$. The equation $J(W) \cdot P=I_{k}$ implies that $\bar{J}(W) \cdot \bar{P}=I_{k}$. This shows that $\bar{J}(W)$ is right invertible over $U\left(F_{n-1}\right)$. By Corollary $2.4 W$ is primitive in F_{n-1}.

3.2. The Free Metabelian Case: $\boldsymbol{R}=\boldsymbol{F}_{n}^{\prime \prime}$

Let $M_{n}=F_{n} / F_{n}^{\prime \prime}$ and $M_{n-1}=F_{n-1} / F_{n-1}^{\prime \prime}$.
Theorem 3.2. Let $W=\left\{a_{1}+F_{n-1}^{\prime \prime}, a_{2}+F_{n-1}^{\prime \prime}, \cdots, a_{k}+F_{n-1}^{\prime \prime}\right\}$ be a subset of M_{n-1}. If $\mathrm{t} \bar{W}=\left\{a_{1}+F_{n}^{\prime \prime}, a_{2}+\right.$ $F n^{\prime \prime}, \cdots, a k+F n^{\prime \prime}$ is primitive in $M n$ then W is primitive in $M n-1$.

Proof. Let \bar{W} be a primitive subset of M_{n}. From Theorem $2.3 \bar{J}(W)$ is right invertible over $U\left(F_{n} / F_{n}^{\prime \prime}\right)$. We consider matrices $B, Q, P, \bar{J}(W) . \bar{P}$ as in the proof Theorem 3.1. Now we are going to prove that

$$
\bar{J}(W) \cdot \bar{P}=I_{k} .
$$

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified
Vol. 5, Issue 4, April 2018
It follows from Lemma 2.1 and Lemma 2.2 that

$$
J(\bar{W})=\left(\frac{\partial}{\partial x_{j}}\left(a_{i}+F_{n}^{\prime \prime}\right)\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n}}=\left(\frac{\partial a_{i}}{\partial x_{j}}+\Delta_{F_{n}^{\prime}}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n}},
$$

where $\Delta_{F_{n}^{\prime}}$ is the right ideal of $U\left(F_{n}\right)$ generated by F_{n}^{\prime}. If we delete n-th column of the matrix $\bar{J}(W)$ we obtain the $k \times(n-1)$ matrix

$$
\bar{J}(\bar{W})=\left(\frac{\partial a_{i}}{\partial x_{j}}+\Delta_{F_{n}^{\prime}}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq n-1}} .
$$

Let $\frac{\partial a_{i}}{\partial x_{j}} \equiv u_{i j}\left(\bmod \Delta_{F_{n}^{\prime}}\right)$. Then we have $\frac{\partial a_{i}}{\partial x_{j}}-u_{i j} \in \Delta_{F_{n}^{\prime}}$. Since the elements a_{i} do not involve x_{n}, for each $i, 1 \leq i \leq k$ we get

$$
\frac{\partial a_{i}}{\partial x_{j}}-u_{i j} \in \Delta_{F_{n-1}^{\prime}} .
$$

Therefore the matrix $\bar{J}(\bar{W})$ can be considered over $U\left(F_{n-1} / F_{n-1}^{\prime \prime}\right)$. Put $U=\left(u_{i j}\right)$. Passing to $U\left(F_{n-1} / F_{n-1}^{\prime \prime}\right)$ we obtain

$$
\bar{J}(W) \equiv U\left(\bmod \Delta_{F_{n-1}^{\prime}}\right)
$$

Hence

$$
\bar{J}(W) \cdot \bar{P} \equiv U \cdot \bar{P}\left(\bmod \Delta_{F_{n-1}^{\prime}}\right) .
$$

Since the entries of the matrices U and \bar{P} depend on only to $x_{1}, x_{2}, \cdots, x_{n-1}$, we have

$$
\bar{J}(W) \cdot \bar{P}=I_{k}
$$

over $U\left(F_{n-1} / F_{n-1}^{\prime \prime}\right)$. Thus $\bar{J}(W)$ is right invertible over $U\left(F_{n-1} / F_{n-1}^{\prime \prime}\right)$. Then from Theorem 2.3, W is primitive in M_{n-1}.
We can extend this technique to free solvable Lie algebras.
Corollary 3.3. Let $L_{n-1}=F_{n-1} / \delta^{c}\left(F_{n-1}\right), L_{n}=F_{n} / \delta^{c}\left(F_{n}\right)$ and

$$
W=\left\{a_{1}+\delta^{c}\left(F_{n-1}\right), a_{2}+\delta^{c}\left(F_{n-1}\right), \cdots, a_{k}+\delta^{c}\left(F_{n-1}\right)\right\} \subset L_{n-1}
$$

If the system $\bar{W}=\left\{a_{1}+\delta^{c}\left(F_{n}\right), a_{2}+\delta^{c}\left(F_{n}\right), \cdots, a_{k}+\delta^{c}\left(F_{n}\right)\right\}$ is primitive in L_{n} then W is primitive in L_{n-1}.
Proof. Let the system \bar{W} be primitive in L_{n}. By Theorem $2.3 J(\bar{W})$ is right invertible over $U\left(F_{n} / \delta^{c-1}\left(F_{n}\right)\right)$. Using similar arguments as in the proof of Theorem 3.2 we see that $J(\bar{W})$ is right invertible over $U\left(F_{n-1} / \delta^{c-1}\left(F_{n}-1\right)\right)$. This completes the proof.

3.3. The Frre Nilpotent Case: $\boldsymbol{R}=\boldsymbol{\gamma}_{\boldsymbol{c}}\left(\boldsymbol{F}_{\boldsymbol{n}}\right)$

It is well known that an endomorphism of a free nilpotent Lie algebra is an automorphism if and only if the linear part of the endomorphism is invertible.

Let $S_{n}=F_{n} / \gamma_{c}\left(F_{n}\right)$ and $S_{n-1}=F-1_{n} / \gamma_{c}\left(F_{n-1}\right), c \geq 2$.
Theorem 3.4. Let

$$
W=\left\{a_{1}+\gamma_{c}\left(F_{n-1}\right), a_{2}+\gamma_{c}\left(F_{n-1}\right), \cdots, a_{k}+\gamma_{c}\left(F_{n-1}\right)\right\} \subset S_{n-1}
$$

If the system $\bar{W}=\left\{a_{1}+\gamma_{c}\left(F_{n}\right), a_{2}+\gamma_{c}\left(F_{n}\right), \cdots, a_{k}+\gamma_{c}\left(F_{n}\right)\right\}$ is primitive in S_{n} then W is primitive in S_{n-1}.
Proof. Since the system \bar{W} is primitive in S_{n} then it is included by a free generating set of S_{n}. That is, there is a subset $\left\{b_{k+1}+\gamma_{c}\left(F_{n}\right), b_{k+2}+\gamma_{c}\left(F_{n}\right), \cdots, b_{n}+\gamma_{c}\left(F_{n}\right)\right\}$ of S_{n} so that

$$
Y=\left\{a_{1}+\gamma_{c}\left(F_{n}\right), a_{2}+\gamma_{c}\left(F_{n}\right), \cdots, a_{k}+\gamma_{c}\left(F_{n}\right), b_{k+1}+\gamma_{c}\left(F_{n}\right), b_{k+2}+\gamma_{c}\left(F_{n}\right), \cdots, b_{n}+\gamma_{c}\left(F_{n}\right)\right\}
$$

Is a free generating set of S_{n}. Let

$$
a_{i}=\sum_{j=1}^{n-1} \alpha_{i j} x_{j}+u_{j}, \text { where } u_{j} \in F_{n}^{\prime} / \gamma_{c}\left(F_{n}^{\prime}\right), \alpha_{i j} \in K, \quad 1 \leq i \leq k
$$

and

$$
b_{i}=\sum_{j=1}^{n} \beta_{i j} x_{j}+v_{j}, \text { where } v_{j} \in F_{n}^{\prime} / \gamma_{c}\left(F_{n}^{\prime}\right), \beta \in K, k+1 \leq i \leq n .
$$

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified
Vol. 5, Issue 4, April 2018
Since Y is a free generating set, the matrix

$$
A=\left(\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1(n-1)} & 0 \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2(n-1)} & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
\beta_{(k+1) 1} & \beta_{(k+1) 2} & \cdots & \beta_{(k+1)(n-1)} & \beta_{(k+1) n} \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
\beta_{n 1} & \beta_{n 2} & \cdots & \beta_{n(n-1)} & \beta_{n n}
\end{array}\right)
$$

Is invertible over the field K. Therefore there exists a marix B such that $A \cdot B=I_{n}$. Thus the rows of A are linearly independent. This allows us to choice a free generating set of S_{n-1} containing the set $a_{1}+\gamma_{c}\left(F_{n-1}\right), a_{12}+\gamma_{c}\left(F_{n-1}\right)$, $\cdots, a_{k}+\gamma_{c}\left(F_{n-1}\right)$ as a subset. Hence

$$
\left\{a_{1}+\gamma_{c}\left(F_{n-1}\right), a_{12}+\gamma_{c}\left(F_{n-1}\right), \cdots, a_{k}+\gamma_{c}\left(F_{n-1}\right)\right\}
$$

is primitive in S_{n-1}.
Along the same lines as in the proof of Theorem 3.4 one can prove the following.
Corollary 3.5. Let $S_{m}=F_{m} / \gamma_{c}\left(F_{m}\right), \quad S_{m+r}=F_{m+r} / \gamma_{c}\left(F_{m+r}\right)$ and

$$
W=\left\{a_{1}+\gamma_{c}\left(F_{m}\right), a_{2}+\gamma_{c}\left(F_{m}\right), \cdots, a_{k}+\gamma_{c}\left(F_{m}\right)\right\} \subset S_{m} .
$$

If $\bar{W}=\left\{a_{1}+\gamma_{c}\left(F_{m+r}\right), a_{2}+\gamma_{c}\left(F_{m+r}\right), \cdots, a_{k}+\gamma_{c}\left(F_{m+r}\right)\right\}$ is primitive in S_{m+r} then W is primitive in S_{m}.
Corollary 3.6. Let R be a verbal ideal of $F_{n}, \quad \hat{R}=R \cap F_{n-1}$ and

$$
W=\left\{a_{1}+\widehat{R^{*}}, a_{2}+\widehat{R^{*}}, \cdots, a_{k}+\widehat{R^{*}}\right\} \subset F_{n-1} / \widehat{R^{*}}
$$

If the system W is primitive in F_{n} / \widehat{R} then W is primitive in F_{n-1} / \widehat{R}.
We conclude this work by summarizing all results which we have already obtained:
Theorem 3.7. . Let R be a verbal ideal of $F_{n}, \hat{R}=R \cap F_{n-1}, \quad W=\left\{a_{1}+\hat{R}, a_{2}+\hat{R}, \cdots, a_{k}+\hat{R}\right\} \subset F_{n-1} / \hat{R}$ and let $\bar{W}=\left\{a_{1}+R, a_{2}+R, \cdots, a_{k}+R\right\}$ be primitive in F_{n} / R. Then W is primitive in F_{n-1} / \hat{R} if
a) $R=\{0\}$
b) F_{n} / R is free metabelian.
c) $\quad F_{n} / R$ is free solvable.
d) $\quad F_{n} / R$ is free nilpotent.

REFERENCES

[1] L. A. Bokut and G. P. Kukin, Algorithmic and Combinatorial Algebra, Kluwer Academic Publ., The Netherlands, 1994.
[2] R. H. Fox, "Free differential calculus I. Derivations in free group rings," Ann. of Math., vol. 57(2), pp. 547-560, 1953.
[3] S.M. Gerstein, "On Whitehead’s Algorithm," Bull. Mer. Math. Soc.(N.S.), vol. 10(2), pp. 281-284, 1984.
[4] C. K. Gupta and N. D. Gupta, "Lifting primitivity of free nilpotent groups," Proc. Amer. Math. Soc., vol. 114(3), pp. 617-621, 1992.
[5] C. K. Gupta and E. I. Timoshenko, "Primitivity in the free groups of the variety $U_{m} U_{n}$," Comm. Algebra, vol. 24(9), pp. 2859-2876, 1996.
[6] C. K. Gupta and E. I. Timoshenko, "Primitive systems of elements in the varieties $\mathrm{A}_{\mathrm{m}} \mathrm{A}_{\mathrm{n}}$: A criteria and induction," Algebra Logic, vol. 38(5), pp. 513-530, 1999
[7] A. A. Mikhalev and A. A. Zolottykh, "Rank of an element of the free Lie (p)-superalgebra," Doklady Akad. Nauk., vol. 334(6), pp. 690-693, 1994.
[8] A. A. Mikhalev and A. A. Zolottykh,, Combinatorial Aspects of Lie Superalgebras, CRC Press, New York, 1995.
[9] A. A. Mikhalev, V. E. Shpilrain, and A. A. Zolotykh, Subalgebras of free algebras, Proc. Amer. Math. Soc., vol. 124(7), 1996.
[10] A. A. Mikhalev and J. T. Yu, "Primitive, almost primitive, test, and Δ-Primitive elements of free algebras with the Nielsen-Shreier property," Journal of Algebra, vol. 228, pp. 603-623, 2000.
[11] V. E. Shpilrain, "On monomorphisms of free groups," Arch. Math., vol. 46, pp. 465-470, 1995.
[12] U. U. Umirbaev, "Partial derivateives and endomorphisms of some relatively free Lie algebras," Sibirski Math. Zh., vol. 34(6), pp. 179-188, 1993.
[13] U. U. Umirbaev, "On the rank of elements of free groups," Fundamentalnaya I Prikladnaya Matematika, vol. 2, pp. 313-315, 1966.

